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Introduction 

Renal artery stenosis is a progressive disease, more than half of all high-grade stenoses 
progress to occlusion within only 2 years [1, 2]. A recent publication in the New England Journal 
of Medicine has stressed the fact that renal artery stenosis with the consequences of stenosis-
induced hypertension and chronic renal failure represents only a small entity among a number of 
overlapping disease complexes including atherosclerotic vascular disease, primary hypertension 
and renal parenchymal disease [3]. In a large number of patients, chronic renal failure may occur 
unrelated to the presence of a diagnosed renal artery stenosis, but may be the result of much 
more common diseases such as essential hypertension or renal parenchymal disease from 
hypertensive nephrosclerosis, diabetes or glomerulonephritis [4, 5]. 
This may be one of the primary reasons for the sobering results from meta-analyses of 
interventional trials reporting only an improvement rate of about 1/3 in regard to hypertension or 
renal function after renal artery stenosis dilatation [6-8]. A cure of the blood pressure occurs only 
in about 19 % of the cases, an improvement of blood pressure in about 52 % of the cases. 
Restenosis after angioplasty is found in up to 30 % of the cases. The DRASTIC study in which a 
medical anti-hypertensive therapy was compared to PTA showed only marginal advantages for 
PTA [9]. In spite of some methodological weaknesses, the authors, however, found a significant 
reduction of medications in the interventional treatment arm and a somewhat higher rate of 
improvement of blood pressure in 68% vs. 38 % of the cases and even a 7 % cure rate versus 
no cure of blood pressure at all in the conservative medical treatment arm. Four renal artery 
occlusions were found in the conservative arm. 
Therefore, the crucial goal in the work-up of renal artery stenosis is to identify patients, who truly 
reveal a hemodynamically significant renal artery stenosis and who can be expected to benefit 
from an interventional revascularisation. This leads to a series of diagnostic challenges for the 
morphologic and functional assessment of renal artery stenosis. Among all different modalities, 
magnetic resonance imaging (MRI) inherits the appealing advantage that it is non-invasive and 
does not expose the patient to potentially nephrotoxic contrast agents or ionizing radiation. 

1. Accuracy of stenosis grading 

Ideally, a 50% diameter stenosis has been defined as hemodynamically significant which 
corresponds to a 75% area stenosis [10]. However, it is well known from pathology studies that 
atherosclerosis of the vascular wall does not spread uniformly but frequently causes eccentric 
and irregular narrowing of the vessel lumen [11]. This has been overlooked for a long time, and 
for decades measurement of the diameter stenosis on digital subtraction angiography (DSA) has 
been and still is considered the gold standard of stenosis grading. Intravascular ultrasound 
(IVUS) in fact was the first modality to be used for the assessment of area stenosis in coronary 
angiography [12]. While this probably can be considered the true gold standard for accurate 
stenosis grading, its costs and its invasiveness do not make it a routine method for primary 
grading of renal artery stenosis. 



3D Gadolinium-enhanced MR angiography (3D-Gd-MRA) initially started out as a technique to 
replace the invasive grading of the diameter stenosis by DSA. While the initial results of small 
studies from 1995 to 1999 revealed highly promising results for 3D-Gd-MRA with sensitivities 
and specificities exceeding 90 %, a recent Dutch multi-center trial called the RADISH (renal 
artery diagnostic imaging study in hypertension) presented highly discouraging results with 
overall sensitivities below 70 % and specificities below 90% [13]. A large percentage of these 
sobering results can be attributed to the lack of spatial resolution of 3D-Gd-MRA at that time with 
typical voxel sizes of 3 – 6 mm³. This resolution makes exact numerical grading of the renal 
artery stenosis difficult and in a number of studies only a ordinal grading scale of three or five 
grades (no stenosis, stenosis less than 50 %, stenosis exceeding 50 %, stenosis exceeding 75 
%, artery occluded) were applied [14]. However, with new state-of-the-art MRI techniques such 
as parallel imaging, high resolution data sets of the renal artery with voxel sizes of only 0.7 mm³ 
can now be acquired within a single breathhold of 23 seconds [15]. While this by itself has 
improved the visualization of the renal artery stenosis, the more important effect is that now the 
isotropic data sets can be deliberately reformatted in any imaging plane, allowing to assess the 
vessel area at the site of the stenosis perpendicular to the course of the renal artery. As a 
consequence, even an eccentric area stenosis can be measured with satisfactory precision. This 
has been found to significantly improve the grading of renal artery stenosis compared to the 
traditional assessment of the lumen diameter. A recent publication has shown a good agreement 
to intravascular ultrasound [16]. 

2. Determination of hemodynamic significance of renal artery stenosis 

In principle, spins moving along a magnetic field gradient are subject to phase shift, which 
directly corresponds to their velocity. Flow measurements in MRI require the acquisition of a 
flow-sensitive and a flow-compensated image, the velocity information is obtained by subtracting 
the two phase images. If ECG-gating is applied, a time-resolved velocity profile can be acquired 
over the cardiac cycle [17]. Integration of the velocity over the vessel area and over the cardiac 
cycle represents mean flow. In healthy individuals four distinct features of the flow profile can be 
described, namely an early rise in flow velocity called the early systolic peak, followed by an 
incision and a small midsystolic peak as well as a more or less continuous diastolic blood flow 
[18]. Experimental animal studies have shown that with a continuous increase of the degree of 
renal artery stenosis a gradual loss of the early systolic peak appears first [19]. Further increase 
in the morphologic stenosis results in a drop of the midsystolic peak with reduction of mean flow. 
These characteristic changes in the flow profile in relation to the degree of renal artery stenosis 
have shown to correlate well with transstenotic pressure gradients [19]. From these results, a 
clinical useful functional grading scheme can be applied to semi-quantitatively assess the 
hemodynamic significance of renal artery stenosis by a four scale grading scheme [20]. With 
further refinements in the acquisition technique using segmented echoplanar imaging an entire 
time-resolved phase-contrast data set of one renal artery can be acquired within a single 
breathhold [21]. In combination with breathhold 3D-Gd-MRA, a morphologic and hemodynamic 
assessment of a renal artery stenosis is possible within a few breathholds [22]. Data from a 
recent tricenter study has shown the synergistic value of a combined morphologic and functional 
grading of renal artery stenosis by 3D-Gd-MRA in combination with phase-contrast flow 
measurements [20]. In comparison with DSA, the number of correctly graded stenoses could be 
increased from 82 % to 97 % on a 2-point scale. 



Other authors have suggested different techniques for assessment of the hemodynamic 
significance of renal artery stenosis. One of the most intensively evaluated approaches is the 
use of MR renography applying multiple 3D gradient echo data sets after administration of small 
amounts of gadolinium chelates in combination with administration of an ACE-inhibitor such as 
Captopril [23]. 

3. Interobserver variability 

A number of publications has recently highlighted the fact that the acceptance of any imaging 
modality as a standard for the morphologic grading of renal artery stenosis is not only influenced 
by its accuracy but also by the interobserver variability among different observers [24, 25]. Solely 
morphology-based imaging modalities such as DSA, MRA or CTA are particularly prone to a 
high degree of interobserver variability, when only measurements of diameter stenosis are 
applied. In this respect no substantial differences have been found between 3D-Gd-MRA and 
DSA [26]. Of interest, the worst interobserver agreement for the assessment of the diameter 
stenosis occurs for stenoses ranging from 30 to 60 % [16]. New concepts for the grading of renal 
artery stenosis based on measurements of the cross-sectional vessel area on high resolution 3D 
data sets have shown to significantly improve the degree of interobserver agreement [16]. This 
concept can be carried further, if a functional MR modality such as phase-contrast flow 
measurements is added to 3D-Gd-MRA and both modalities are interpreted together as one 
comprehensive stenosis grading. This has also shown to significantly improve interobserver 
agreement compared to both MRA as well as DSA [20]. 

4. Parenchymal versus renovascular disease 

As a consequence of a long standing renal artery stenosis, secondary renoparenchymal disease 
can develop [27]. This ischemic nephropathy is probably an impaired adaptation of the kidney to 
a more hypoxic state with chronic reduction of blood flow particularly in the medulla [28]. 
However, more frequently primary parenchymal disease is present unrelated to renal artery 
stenosis and is the result of common diseases with involvement of the kidneys such as diabetic 
nephropathy, hypertensive nephrosclerosis or glomerulonephritis. In general, three different 
methods for MR perfusion imaging of the kidney have been described for renal artery stenosis, 
namely qualitative assessment of renal perfusion with arterial spin labeling (ASL) techniques 
without contrast agents, semi-quantitative perfusion measurements with extracellular gadolinium 
chelates and quantitative assessment of renal perfusion with intravascular contrast agents with 
absolute parameters of regional renal perfusion [29-32]. A commonly used ASL technique is the 
so-called flow sensitive alternating inversion recovery method (FAIR) [29]. In one study of 46 
patients an overall accuracy of 88% could be achieved to classify kidneys into either healthy or 
diseased compared to the final clinical diagnosis using a combination of mean arterial blood flow 
from phase-contrast flow measurements and renal perfusion from arterial spin labeling. One 
major disadvantage of using arterial spin labeling techniques for renal perfusion imaging is the 
poor signal to noise of this approach at 1.5 Tesla. This makes the calculation of semi-
quantitative or quantitative parameters of renal perfusion difficult and unreliable, although some 
authors have presented absolute values of renal perfusion with modified ASL techniques and 
acceptable reproducibility [33]. For absolute quantification of renal perfusion, two different 
classes of intravascular agents have been used, namely strongly protein binding substances 
such as MS-325 (Vasovist, Schering AG) or ultra-small particle iron oxides (USPIO) such as 



NC100150 (Clariscan, GE Healthcare) [30, 31]. Absolute quantification is essentially performed 
in 4 steps [31]: first signal changes are transferred into concentration changes assuming a linear 
relation between R2* and the concentration of the contrast agent. Second, the principles of 
indicated dilution theory are applied and the regional blood volume is determined from the area 
under the measured tissue concentration-time curves normalized to the integrated arterial input 
function. Third, the mean transit time is calculated by deconvolution of the tissue concentration-
time curve with the arterial input function to obtain the true residue function within the tissue, i.e. 
the concentration-time curve in the tissue following an idealized instantaneous arterial input of 
contrast agent. Dividing regional blood volume by the mean transit time, regional blood flow per 
gram of tissue can be calculated. In one study, the regional renal blood showed a characteristic 
variation for the different degrees of renal artery stenosis [34]. While the mean parenchymal 
blood flow was in the range of 500ml/100g/min for the non-stenosed artery, it significantly 
dropped to 150ml/100g/min for stenoses exceeding 90 % in the acute animal model. In patients, 
substantial differences in renal perfusion were found between normal kidneys (approximately 
380 ml/100g/min renal regional blood flow) and those kidneys with parenchymal damage 
exhibiting only a regional renal blood flow of 170ml/100g/min. 
A more easy and robust approach for the clinical routine is dynamic MR perfusion 
measurements with extracellular gadolinium chelates. The recent availability of high 
performance cardiovascular MRI scanners with improved gradient performance allows the use of 
saturation recovery gradient-echo sequences that offer high signal linearity and high temporal 
resolution [32]. The great advantage of this type of functional imaging of the renal parenchyma is 
that it can be easily integrated into a comprehensive renal exam since only few milliliters of 
gadolinium chelates are required. In a recent study of 73 patients referred for suspected renal 
artery stenosis significant differences between patients without or low to intermediate renal 
artery stenosis and those with high grade stenosis were found for MTT, MUS and TTP [32]. An 
additional advantage of regional perfusion measurements in the kidneys is the identification of 
segmental or subsegmental renal artery stenosis. Those perfusion maps have also high 
potential to identify regional hypoperfusion of the kidney from fibromuscular dysplasia (FMD) 
induced stenoses of the segmental renal arteries [32]. This distal involvement of the main renal 
artery as well as affection of intrarenal branches is frequently found in FMD and can usually not 
be detected by 3D-Gd-MRA due to constraints in spatial resolution, parenchymal overlay as well 
as random motion in the more distal branches of the renal artery [35]. 

5. Monitoring of renal artery stenosis dilatation during intervention 

The necessity for exact mapping of the renal artery stenosis both in terms of true reduction of 
the lumen as well as its functional significance becomes clear when one looks at the published 
data for rates of recurrent stenosis as well as cure and improvement rates for both blood 
pressure and renal function [6, 7, 36]. For all three criteria a large range of published results is 
found in literature depending on the exact definition of the pre-interventional degree of stenosis. 
In our institution intravascular ultrasound is used to verify the pre-interventional MRA and intra-
procedural DSA mapping of renal artery area The repetitive PTA increased the mean lumen 
area by 21 % [37]. 

6. Post-interventional therapy monitoring 

Phase-contrast flow measurements can be routinely performed distal to the stent deployment 



site. In one study, the MR flow curves in the postoperative renal arteries of 12 patients showed a 
restoration of the normal flow profile with presence of the early systolic peak, the early systolic 
incision, the midsystolic peak and the diastolic blood flow [18]. The three blood flow parameters 
mean blood flow, maximum velocity and time to maximum velocity demonstrated significant 
changes in comparison to the preoperative data. 

7. Prediction of improvement after interventional therapy 

The publication in the New England Journal of Medicine by Radermacher J et al. has advocated 
the importance of ultrasound resistance index measurements for predicting the therapeutic 
benefit in patients with RAS and impaired renal function in terms of an improved creatinine 
clearance [38]. This study found a resistance index </> 0.8 to be a potent discriminator between 
those two patient groups. Currently, no other imaging modality has been able to demonstrate its 
value in order to predict an improvement of renal function after interventional therapy. An 
ongoing trial, the PROFIT (prediction of renal outcome following interventional therapy) study is 
designed to compare the functional MRI parameters including flow and perfusion versus the 
currently established ultrasound resistive index [39]. One of the remaining problems is that 
pharmacologic stressing of the kidney has not yet been demonstrated with imaging modalities. 
This might be one key step to resolve the problem if persistent vasoconstriction is present in the 
small intrarenal arteries that may restrict functional improvement after revascularisation. In this 
respect, intrarenal oxygenation measurements by means of R2* mapping with multi-echo 
gradient-echo sequences appear to be of high potential [40]. Results from volunteer studies and 
patients with diabetes have already shown that the decrease of prostaglandine E synthesis 
leads to a reduction of blood flow particularly in the medulla and consequently to a significantly 
diminished response of renal blood flow to an oral water load [41, 42].  
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